Neurosurgical Aspects of Closed Head Injury Michael Bruce Horowitz, M.D.

Definition of Closed Head Injury

- Insult rendered to the brain following a traumatic event that does not create an opening in the skull aside from a linear skull fracture
- Typical events include:
 - Motor vehicle accident
 - Fall
 - Assault with a blunt object
 - Domestic abuse including "shaken children"
 - Sports injuries

Etiology of CHI

- Acceleration-Deceleration is critical to the development of most CHI (no intracranial seatbelts)
- The skull s interior contour is critical to the development of most CHI (no intracranial air bags)
- The brain s gelatinous consistency is critical to the development of most CHI
- The axonal structure to neurons and the neurologic system s architecture of white matter pathways and tracts is critical to the development of most CHI

Epidemiology of <u>Traumatic</u> Brain Injury

- Incidence between 100-400/100,000/year
- Male:Female 2:1
- Peak incidence ages 15-35
- In England, most common cause of death in children ages 1-15
- Over 50% of trauma related deaths are associated with TBI

Pathophysiology

• Types of CHI

- Diffuse Axonal Injury (DAI)
 - DAI is caused by angular accelerations of the head and subsequent rotation and torque of the cerebral hemispheres, brainstem, and their deep fiber tracts and nuclei
 - Small hemorrhages are seen in the corpus callosum, septum pellucidum, deep gray matter, midbrain, pons
 - Axons ultimately degenerate

Diffuse Axonal Shearing Injury

MASS GENERAL HOSPITAL PATHOLOGY CEPT METTIC 1 7 4 , 21 , 51 . 31

DAI

Pathophysiology

- Types of CHI
 - Focal contusions (bruises) and lacerations (cuts) with subsequent edema
 - *Coup-contra coup* injuries involving frontal lobe and temporal lobe tips, occipital poles
 - Intracranial hematomas
 - Subdural
 - Epidural
 - Intraparenchymal

Linear Skull Fracture

Linear Skull Fracture

Raccoon s Eyes

Battle s Sign

Epidural Hematoma

Epidural Hematoma

Epidural Hematoma

Frequent
 Occasional

Anatomic diagram depicts typical locations of contusional traumatic brain injuries

Contusions on MRI

Intraparenchymal Hematoma

Pathophysiology

- Primary brain injury at the time of insult leads to a series of other secondary inflammatory biochemical changes in the brain tissue
- Inflammation period lasts 2-3 weeks
- During this inflammatory period the brain is more susceptible to hypotension, hypoxia, pyrexia

Factors in the Post Injury Period

• Excitotoxins

- Excitatory amino acids (aspartate and glutamate)
 released in response to reduction in cerebral blood flow
- Lead to cell death by activation of N-methyl Daspartate (NMDA) receptor and the associated Ca ion channel
- Ca influx into the cell leads to cell membrane destruction and cell death
- Research into NMDA receptor blockers has not yet proved protective

Factors in the Post Injury Period

• Inflammation

- After injury intracranial cells increase their production of cytokines which activate inflammatory cascades
- After injury adhesion molecules increase leading to an influx of leukocytes which can in turn damage brain tissue
- Free Radicals
 - Free radical production increases after injury leading to cell membrane damage
- Hyperglycemia
 - Leads to lactic acid production

Secondary Brain Injury

- Secondary brain injury refers to factors that present subsequent to the initial insult and deleteriously affect brain function thus further compromising activity and recovery
- Examples are:
 - Pyrexia
 - Secondary brain swelling and herniation
 - Extra-axial masses and increased intracranial pressure or herniation
 - Intracranial hematomas

Secondary Brain Injury

- Each of these secondary injuries further affects brain function through:
 - Hypoxia
 - Hypoperfusion
 - Reduction in cerebral perfusion pressure
 - Acidosis
- Resulting mismatches between cell metabolism and energy supply along with physical distortion of neural architecture leads to cell and tissue death

What is the clinicians role?

- We cannot prevent the initial injury
- We strive to recognize and treat secondary injuries as well as try to prevent their development
- These goals define a range of community standards for post injury neurosurgical management

Community Standards

- Physicians deal with two communities
 - Geographic community in which we practice (hospital environment and its capabilities)
 - Neurosurgical community
- Often the ideals of one community do not or cannot meet the expectations of the other
- The reasons for these mismatches need to be taken into consideration when reviewing cases or determining liability and when obtaining physician opinions.
- Not everyone practices in an Ivory Tower

• Assess in field and try to get patient to a neurosurgical or trauma center ASAP

• Physical Examination

- Associated trauma- skull, ears, spine, body, heart, lungs
- In children- retinal examination
- Neurological Examination
 - Glasgow Coma Score
 - Pupillary examination
- History- mode of injury
- Laboratory tests- blood count, coagulation profile

Indications for Neurosurgical Consultation

- CT scan demonstrates an intracranial mass lesion
- Intracranial lesion is suspected yet a head CT cannot be obtained because of other life threatening injuries (pneumoventriculography possible)
- GCS < 9; External ventricular drain needed
- Confusion for more than 4 hours
- Deterioration in neurological examination
- Focal neurological findings
- Compound depressed skull fracture
- CSF leak

• Glasgow Coma Score

– Eye Opening

•	Spontaneous	2
•	To Speech	3
•	To Pain	ć

• None

– Verbal Response

•	Oriented	4
•	Confused	2
•	Inappropriate	3
•	Incomprehensible (sounds)	2
•	None	1
Best	Motor	
•	Obeys commands	e
•	Localizes to pain	4
•	Withdraws from pain	2
•	Decorticate	3
•	Decerebrate	2
•	None	1

Total Score 3 - 15

Glasgow Coma Scoring

• Why is GCS important?

- Allows healthcare personnel to quickly discuss patients and relate clinical status
- Allows for accurate serial assessment of patient progress
- May predict the likelihood of other injuries
- May help predict clinical outcomes

• Risk of an operable hematoma in CHI patient

• <u>GCS</u>	Risk
- 15	1 in 3615
- 14	1 in 51
- 3-8	1 in 7

- GCS can help predict patient outcomes
- GCS can help predict likelihood of elevated intracranial pressure (ICP)
 - $-\operatorname{GCS}$ < 9
 - ICP > 10 in 82%
 - ICP > 20 in 44%
 - ICP > 40 in 10%

- Imaging Evaluation
 - CT scanning
 - Indicated for any patient who suffers an injury that leads to a GCS < 15
 - Unclear if it is indicated for normal GCS and head injury such as a linear skull fracture
 - CT looks for blood clots (intra and extraaxial), brain swelling, air leaks, bony fractures
 - Findings dictate need for surgical therapy and types of medical therapy

- CT/Xenon Blood flow studies

 Look at cerebral blood flow which can help determine subsequent management with ventilator and medications
 - Not available at many centers

– MRI scanning

- Usually useful in the subacute or chronic period when looking for more occult brain injuries especially in deeper areas or in the brainstem
- Not a typical study done in the acute period

Angiography

• Done when there is suspicion of a vascular injury

- CT findings may help predict the presence of elevated ICP
- Elevated ICP leads to further brain injury by mechanically disrupting brain tissue and possibly reducing cerebral blood flow

- High/low density lesion on CT 53 63% chance increased ICP
 Normal CT 13% incidence of elevated ICP
 - Factors with a normal CT that increase the incidence of increased ICP
 - -Age > 40
 - Systolic BP < 90 mm Hg
 - Abnormal motor posturing
 - 2 or more features 60% incidence increased ICP
 - 1 or more features 4% inciden
- 4% incidence increased ICP

• Absent or compressed basal cisterns on first CT scan with $\overline{GCS} < 9$

- Absent 77% mortality
- Compressed 39% mortality
- Normal 22% mortality
- Absent 85% poor outcome
- Compressed
- Normal

- 64% poor outcome 44% poor outcome
- No survivors when absent cisterns associated with 15 mm shift
- 74% with absent cisterns had ICP > 30

Basal Cisterns

CT Imaging Diagnostic Categories in CHI and Mortality

•	Diffuse Injury I	No visible abnormality	9.6% mort.
•	Diffuse Injury II	Cisterns present with 0-5 mm shift; no high density lesion greater than 25cc	13.5% mort.
•	 Diffuse Injury III Cisterns compressed or absent; shift 0-5mm; no high density lesion > 25cc (swelling) 		34% mort.
•	Diffuse Injury IV Shift > 5 mm; no lesion > 25 cc (shift)		56.2% mort.
•	Evac. Mass Lesio	n Any lesion surgically evacuated	38.8% mort.
•	Nonevac Mass Le	es Mass > 25cc not evacuated	52.8% mort.
•	Brainstem injury		66.7% mort.

- Remove mass lesion if:
 - Patient has a survivable exam
 - Patient is age appropriate
 - It is associated with brain shift (usually > 1 cm)
 - GCS is abnormal
 - It is in a location that portends imminent danger (ie: low middle fossa)
 - Clot size is considered significant (ie: 60cc rule)

• Acute Subdural Hematoma

- Very common extra-axial mass lesion in CHI
 - Mortality 42 90%
- Usually a marker for more diffuse underlying brain injury from shear forces

• GCS 3-5	Mortality 76-84%, Functional
	recovery rate 14%
• GCS 6-8	Mortality rate 36-48%, Functional recovery rate 25-40%
• GCS 12-15	Mortality rate 0%, Functional recovery rate 92%

• Acute Subdural Hematoma

- Conscious at surgery Mortality rate 6%
- Unconscious at surgery Mortality rate 77%
- Pupils abnormal Mortality rate 75%
- Decerebrate Mortality rate 77%
- Decerebrate + Unreactive pupils
 Mortality rate
 95%
- Age >50, time to evacuation > 4 hours, elevated post-op ICP = Poor prognosticators

- Elevated ICP (Usually treat when ICP is greater than 20)
 - ICP monitor placed
 - CSF drained
 - Hyperventilation to reduce CBF ???- Controversial issue
 - Mannitol/Lasix to reduce extracellular fluid
 - Barbiturates to reduce CBF
 - Reduce body temperature (medications, devices)
 - Surgical removal of brain tissue and/or skull

- Try to reduce incidence of secondary insults
 - Hypoxia
 - Infection
 - Hyperglycemia
 - Fever
 - Deep venous thrombosis
 - Decubitus ulcers
 - Brain swelling
 - Seizures

ICU Goals

- Keep serum sodium >135-140 and < 160. A low Na can lead to increased brain swelling
- Avoid hyperglycemia to avoid lactic acidosis
- Nutritional support within 72 hours of CHI. Metabolic expenditure can be 120-250% of a normal patient. Keep some nutrition in gut.
- Mild head elevation ???
- Physical therapy
- DVT prophylaxis

Rehabilitation

- It takes most adults at least one year to recovery maximally from a severe CHI
- Rehabilitation centers are a key part of this recovery phase.

Outcomes Evaluation

- Glasgow Outcome Score
 - -1 Dead
 - -2 Persistent Vegetative State
 - 3 Severe Disability
 - 4 Moderate Disability
 - 5 Good Recovery

Outcomes

• Other outcomes scales exist yet it is unclear which ones are best.