Treatment of Pediatric Intracranial Vascular Malformations using Onyx-18

Michael Horowitz M.D.
Pittsburgh, Pennsylvania
Background

- AVMs cause 30-50% of all ICHs in children
- Estimated risk of hemorrhage is 2-4% per year
- Estimated M&M for each hemorrhagic event in children is 50% and 5-10% respectively
- Consensus on aggressive treatment of pediatric AVMs

Onyx Liquid Embolic System

• Approved in 2005 by the US FDA for the pre-surgical embolization of brain AVMs
• Cohesive polymer of ethylene vinyl alcohol (EVOH) and dimethyl sulfoxide (DMSO)
• Mixed with tantalum particles for visualization
Role of Endovascular Treatment for AVMs

- **Primary treatment** (goal of complete embolization)
- **Adjuvant treatment**
 - Pre-operative embolization
 - Reduce blood loss
 - Eliminate deep feeders with difficult surgical access
 - Pre-radiosurgery embolization
 - Goal to reduce nidus volume
 - Improved obliteration rates with smaller volumes
 - Reduce radiation exposure and radiation induced edema

Pittsburgh Experience with Endovascular Treatment of Pediatric Vascular Malformations

• 6 children
 – 3 female
 – 3 male
• Age range
 – 1 day to 12 years
• 4 AVM
• 2 VOGM
<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age, Sex</th>
<th>Location</th>
<th>AVM Size (cm)</th>
<th>AVM Drainage</th>
<th>Clinical Presentation</th>
<th>Treatment</th>
<th>Angiographic Outcome (% residual)</th>
<th>Clinical/Radiographic FU (mos)</th>
<th>mRS/FIM Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 yrs, M</td>
<td>rt cerebellar</td>
<td>2.5</td>
<td>superficial</td>
<td>papilledema</td>
<td>1 endovascular embolization, 1 GKS</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rt frontal</td>
<td>2.5</td>
<td>superficial</td>
<td>papilledema</td>
<td>2 endovascular embolizations, 1 GKS</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lt frontoparietal</td>
<td>3</td>
<td>superficial</td>
<td>papilledema</td>
<td>1 endovascular embolization, 2 GKS</td>
<td>40</td>
<td>12/7</td>
<td>0/7</td>
</tr>
<tr>
<td>2</td>
<td>10 yrs, F</td>
<td>rt parietal</td>
<td>5.5</td>
<td>superficial</td>
<td>hemorrhage</td>
<td>4 endovascular embolizations, 1 GKS</td>
<td>60</td>
<td>7/1</td>
<td>0/7</td>
</tr>
<tr>
<td>3</td>
<td>5 days, F</td>
<td>lt hemisphere</td>
<td>>10</td>
<td>deep</td>
<td>high-output heart failure</td>
<td>5 endovascular embolizations</td>
<td>70</td>
<td>NA</td>
<td>6/NA</td>
</tr>
<tr>
<td>4</td>
<td>12 yrs, M</td>
<td>rt parietooccipital</td>
<td>3.5</td>
<td>deep</td>
<td>IVH</td>
<td>1 endovascular embolization</td>
<td>0</td>
<td>10/6</td>
<td>2/5</td>
</tr>
<tr>
<td>5</td>
<td>20 days, F</td>
<td>VOGM</td>
<td>NA</td>
<td>NA</td>
<td>high-output heart failure</td>
<td>6 endovascular embolizations</td>
<td>NA</td>
<td>12/0</td>
<td>0/NA</td>
</tr>
<tr>
<td>6</td>
<td>1 day, M</td>
<td>VOGM</td>
<td>NA</td>
<td>NA</td>
<td>high-output heart failure</td>
<td>1 endovascular embolization</td>
<td>NA</td>
<td>NA</td>
<td>6/NA</td>
</tr>
</tbody>
</table>

* FU = follow up; NA = not applicable.
Methods

• Intentional staging
 – Limit renal toxicity
 • Attempt to keep dye load < 5 mL/kg
 • Attempt to keep DMSO dose below 600 ug/kg
 – Allow brain adaptation to altered hemodynamics
• General anesthesia
 – Neurophysiological monitoring
 • Upper and lower ext. SSEPs, EEG, BSAERs
• Modified WADA prior to embolization
 – 1 mL lidocaine or 3 mL methohexital sodium
DMSO dose administered in relation to patient's weight and volume of Onyx

<table>
<thead>
<tr>
<th>Volume of Onyx (ml)</th>
<th>Patient Weight (lb/kg)</th>
<th>DMSO Dose (μg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>8/3</td>
<td>367</td>
</tr>
<tr>
<td>2.0</td>
<td>8/3</td>
<td>733</td>
</tr>
<tr>
<td>3.0</td>
<td>8/3</td>
<td>1100</td>
</tr>
<tr>
<td>1.0</td>
<td>25/11</td>
<td>97</td>
</tr>
<tr>
<td>5.0</td>
<td>25/11</td>
<td>484</td>
</tr>
<tr>
<td>10.0</td>
<td>25/11</td>
<td>968</td>
</tr>
<tr>
<td>1.0</td>
<td>50/23</td>
<td>48</td>
</tr>
<tr>
<td>5.0</td>
<td>50/23</td>
<td>242</td>
</tr>
<tr>
<td>10.0</td>
<td>50/23</td>
<td>484</td>
</tr>
<tr>
<td>1.0</td>
<td>75/34</td>
<td>32</td>
</tr>
<tr>
<td>5.0</td>
<td>75/34</td>
<td>161</td>
</tr>
<tr>
<td>10.0</td>
<td>75/34</td>
<td>323</td>
</tr>
<tr>
<td>1.0</td>
<td>100/45</td>
<td>24</td>
</tr>
<tr>
<td>5.0</td>
<td>100/45</td>
<td>121</td>
</tr>
<tr>
<td>10.0</td>
<td>100/45</td>
<td>242</td>
</tr>
<tr>
<td>1.0</td>
<td>125/57</td>
<td>19</td>
</tr>
<tr>
<td>5.0</td>
<td>125/57</td>
<td>97</td>
</tr>
<tr>
<td>10.0</td>
<td>125/57</td>
<td>194</td>
</tr>
<tr>
<td>1.0</td>
<td>150/68</td>
<td>16</td>
</tr>
<tr>
<td>5.0</td>
<td>150/68</td>
<td>81</td>
</tr>
<tr>
<td>10.0</td>
<td>150/68</td>
<td>161</td>
</tr>
<tr>
<td>1.0</td>
<td>175</td>
<td>14</td>
</tr>
<tr>
<td>5.0</td>
<td>175</td>
<td>69</td>
</tr>
<tr>
<td>10.0</td>
<td>175</td>
<td>138</td>
</tr>
<tr>
<td>1.0</td>
<td>200</td>
<td>12</td>
</tr>
<tr>
<td>5.0</td>
<td>200</td>
<td>61</td>
</tr>
<tr>
<td>10.0</td>
<td>200</td>
<td>121</td>
</tr>
</tbody>
</table>
Methods

• We typically use Onyx-18
 – Less viscous than Onyx-34
 – May allow deeper penetration
• Remember DMSO is a universal solvent
 – Must use DMSO compatible catheters
 • ev3 – Marathon (1.3 F) Echelon (1.7 or 1.9 F)
 • BALT – SONIC (1.2 F)
Caveats for very young patients

• Consider asking general surgery colleagues to obtain peripheral arterial access via cut-down
 – Allows direct repair of vessel after removal of sheath
• Consider leaving in sheath between stages to avoid repeat arteriotomy
• Warn families of DMSO aroma post procedure
Case 1

- 10 y.o. boy noted to have papilledema on routine eye exam
- CT, MR, and DSA show
 - 2.5 cm right frontal AVM
 - 2.5 cm left frontal AVM
 - 2.5 cm right cerebellar AVM
Right Frontal AVM

• 2 endovascular embolizations
 – Pericallosal and aberrant proximal ACA feeders embolized in 2 procedures over 48 hours
 – 60% nidus reduction
• 1 Gamma Knife Radiosurgery (GKRS) treatment
Left Frontal AVM

• 1 endovascular embolization
 – 3 distal left MCA feeders, 2 distal left ACA feeders
 – 60% nidus reduction
• 2 staged GKRS treatments
Right Cerebellar

- 1 endovascular embolization
 - Right SCA and PICA feeders
 - 80% nidus reduction
- 1 GKRS treatment
Case 2

- 20 day old female presented with high output heart failure
- Cranial Ultrasound, MR, and DSA show
 - VOGM
 - Fed by bilateral PCAs and AChA
 - Drainage into falcine and straight sinus
Treatment

• 5 endovascular procedures slowed flow enough to eliminate heart failure and improve cardiac hemodynamics, allowing patient to return home
 – Stage I – tranvenous coil embolization of fistula
 – Stage II – transarterial coil embolization of left PCA feeders
 – Stage III – transarterial coil sacrifice of distal left PCA
 – Stage IV – transvenous coil embolization of venous varix fed by right PCa
 – Stage V – transarterial coil embolization right AChA
One year later

• Patient returned with shortness of breath
• DSA shows residual flow through fistula
• Underwent Stage VI transvenous Onyx embolization of residual fistula resulting in eradication of flow through the VOGM
Case 3

• 12 y.o. boy presented with sudden LOC and IVH
• CT, MR, and DSA show
 – 3.5 cm right parieto-occipital AVM
Right Parieto-occipital AVM

• 1 endovascular embolization
 – Onyx embolization of the medial posterior choroidal artery
• No residual on 6 month f/u DSA
Conclusions

- Pediatric vascular malformations often require multimodality treatment
- Onyx embolization is one therapy that can provide safe and durable treatment
- Should be considered an adjuvant treatment; complete embolization is rare
- Toxicity and recanalization remain primary concerns
Thanks to ev3 for providing an unrestricted educational grant.

Acknowledgements